Buenas!
Si te refieres a si se puede saber la orientación general de un cuerpo respecto a una base fija conociendo su vector de giro, sí se puede.
A ver si es éste tu caso: imaginemos un cuerpo arbitrario cualquiera encima de una mesa. La mesa, al estar fija tiene asociada una base
B (vectorial). Asimismo, consideremos también la base
B' solidaria al cuerpo. Imaginemos que el sólido tiene solamente una rotación simple
e (vector de giro) alrededor de un eje. Entonces existe una matriz
S que permite hacer el cambio de base B' a B, conociendo el giro
e, de tal forma que un vector de ángulo
u' genérico del cuerpo expresado en la base
B' se puede expresar como
u en la base fija
B haciendo
u=
S·
u'Imaginemos ahora un giro arbitrario como el de la peonza. Se puede descomponer en 3 giros independientes a traves de sus respectivos ejes, de forma que el movimiento final del sólido será composición de estos 3 giros. En este caso no podemos pasar directamente de
u a
u', ya que por medio tenemos 3 giros, pero lo que sí que se puede hacer es averiguar a partir de cada giro la matriz de cambio de base
S de cada paso, de tal forma que:
u=
S·
S'·
S''·
u''; estos 3 giros independientes son los ángulos de Euler.
Te aseguro que es de las cosas más asquerosas que he hecho en mecánica
: me daba muuuucho palo hacer estas matrices y ya lo tengo bastante oxidado. Espero que aclares algo con lo que te he escrito. Pon tu problema real si eso, a ver si podemos sacar algo en claro.
Un saludo,