NeoSX escribió:¿Que es y como se forma un diodo?
Esto me resulta complejo de explicar pero al leerlo antes he aplicado el proceso con lo del estaño y cobre. Sobre los diodos requiere una explicacion detallada que voy a "copypastear" el tocho que aunque ya se ha comentado lo explica muy detalladamente.
Fuente:
forosdeelectronica
Introduccion::
El carbono, el silicio y el galio poseen una propiedad única en su estructura electrónica, cada uno posee 4 electrones en su orbita externa lo que les permite combinar o compartir estos electrones con 4 átomos vecinos, de esta forma no quedan electrones libres como en el caso de los conductores que poseen electrones libres en su ultima orbita que pueden moverse a través de los átomos formando así una corriente eléctrica.
Tanto el Silicio dopado N como el Silicio dopado P tienen propiedades conductoras pero a decir de verdad no son muy buenos conductores de ahí el nombre de semiconductor.
Dopaje N: se dopa con Fósforo o Arsénico en pequeñas cantidades. El Fósforo y el Arsénico tienen 5 electrones en su orbita externa que terminan sobrando cuando se combina en una red de átomos de silicio. Este quinto electrón se encuentra libre para moverse, lo que permite que una corriente eléctrica fluya a través del Silicio. Se necesita solo una pequeña cantidad de dopaje o impurezas para lograr esta corriente, por ejemplo al agregar un átomo de impurezas por cada 108 (1000 millones) átomos de Silicio se incrementa la conductividad en un factor de 10. Los electrones tienen una carga negativa, por eso se llama dopaje tipo N.
Dopaje P: En este caso el silicio se dopa con Boro o Galio en pequeñas cantidades. El Boro y el Galio tienen 3 electrones en su orbita externa por lo que termina faltando un electrón cuando se combina en una red de átomos de Silicio. Este electrón faltante ocasiona que se formen huecos en la red. Estos huecos permiten que se circule una corriente a través del Silicio ya que ellos aceptan de muy buena gana ser “tapados” por un electrón de un átomo vecino, claro que esto provoca que se forme un hueco en el átomo que desprendió dicho electrón, este proceso se repite por lo que se forma una corriente de huecos a través de la red. Es de notar que en todos los caso lo único que se mueve fuera del átomo son los electrones, pero en este caso dicho movimiento provoca un efecto similar o equivalente al movimiento de huecos. Se necesita solo una pequeña cantidad de dopaje o impurezas para lograr esta corriente. Los agujeros tienen una carga positiva, por eso se llama dopaje tipo P
Creando el diodo:
Cuando unimos Silicio N y Silicio P, tenemos una juntura semiconductora P-N este es el dispositivo semiconductor mas simple y es conocido con el nombre de diodo y es la base de toda la electrónica moderna.
El diodo permite la circulación de corriente en un sentido pero no en el sentido contrario.
Cuando conectamos el diodo a una batería con el terminal P al borne negativo y el terminal N al borne positivo (lo conectamos en inversa) tenemos que en el primer caso los huecos son atraídos por los electrones que provienen del terminal negativo de la batería y ese es el fin de la historia. Lo mismo sucede del lado N, los electrones libres son atraídos hacia el terminal positivo.
Por lo tanto no circula corriente por la juntura ya que electrones y agujeros se movieron en sentido contrario (hacia los terminales del diodo)
Si damos vuelta el diodo (lo conectamos en directa), tenemos que los electrones libres del terminal N se repelerán con los electrones libres del terminal negativo de la batería por lo que los primeros se dirigirán a la zona de juntura. En el terminal positivo tenemos que los huecos del terminal P se repelerán con los huecos del terminal positivo de la batería por lo tanto los huecos del semiconductor se dirigirán a la juntura.
En la juntura los electrones y los huecos se recombinan formando así una corriente que fluirá en forma permanente.
Un diodo real cuando se conecta en reversa tiene una pequeña corriente de perdida del orden de los 10 microamperes que se mantiene aproximadamente constante mientras la tensión de la batería no supere un determinado nivel, luego del cual la corriente crece abruptamente, esta zona se llama zona de ruptura o avalancha. Generalmente esta zona queda fuera de las condiciones normales de funcionamiento.
Cuando el diodo se conecta en directa veremos que sobre sus extremos se produce una caída de tensión del orden de los 0.6 volts para los diodos de silicio normales. Esta caída de tensión es un reflejo de la energía necesaria para que los electrones salten la juntura y es característica de cada material. Este valor es conocido como potencial de salto de banda (band gap)
Tenemos entonces que para sacar un electrón de su orbita necesitamos energía y que esta se pierde en el transcurso de su recorrido dentro del diodo, esta energía se transforma en radiación, básicamente calor u ondas infrarrojas en un diodo normal.