yo lo se
A ver, la Topología es una disciplina Matemática que estudia las propiedades de los espacios topológicos y las funciones continuas. La Topología se interesa por conceptos como proximidad, número de agujeros, o el tipo de consistencia que presenta un objeto, entre otras múltiples propiedades.
Los matemáticos usan la palabra topología con dos sentidos: informalmente es el sentido arriba especificado, y de manera formal se refieren a una cierta familia de subconjuntos de un conjunto dado, familia que cumple unas reglas sobre la unión y la intersección. Este segundo sentido puede verse desarrollado en el artículo espacio topológico.
Generalmente se presenta la Topología como la "Geometría de la página de goma". Esto hace referencia a que en la Geometría euclídea dos objetos serán equivalentes mientras podamos transformar uno en otro mediante isometrías (rotaciones, traslaciones, reflexiones, etc), es decir, mediante transformaciones que conservan las medidas de ángulo, longitud, área, volumen y otras. En Topología, dos objetos son equivalentes en un sentido mucho más amplio. Han de tener el mismo número de trozos, de agujeros, de intersecciones, etc. En topología está permitido doblar, estirar, encoger, retorcer, etc., los objetos pero siempre que se haga sin romper ni separar lo que estaba unido, ni pegar lo que estaba separado. Por ejemplo, un triángulo es topológicamente lo mismo que una circunferencia, ya que podemos transformar uno en otra de forma continua, sin romper ni pegar. Pero una circunferencia no es lo mismo que un segmento (ya que habría que partirla por algún punto). Ésta es la razón de que se la llame la "Geometría de la página de goma", porque es como si estuviéramos estudiando Geoemtría sobre un papel de goma que pudiera contraerse, estirarse, etc.
Un chiste habitual entre los topólogos (los matemáticos que se dedican a la topología) es que «un topólogo es una persona incapaz de distinguir una taza de una rosquilla».
Y ke yo recuerde, históricamente, las primeras ideas topológicas conciernen al concepto de límite y al de completitud de un espacio métrico, y se manifestaron principalmente en la crisis de los inconmesurables de los pitagóricos, ante la aparición de números reales no racionales. El primer acercamiento concreto al concepto de límite y también al de integral aparece en el método de exhaución de Arquímedes. La aparición del Análisis Matemático en el siglo XVII puso en evidencia la necesidad de formalizar el concepto de proximidad y continuidad, y la incapacidad de la Geometría para tratar este tema. Fue precisamente la fundamentación del Cálculo Infinitesimal, así como los intentos de formalizar el concepto de Variedad en Geometría lo que llevó a la aparición de la Topología, a finales del siglo XIX y principios del XX.
Se suele fechar el origen de la Topología con la resolución por parte de Euler del problema de los puentes de Köenigsberg, en 1735. Ciertamente, la resolución de Euler del problema utiliza una forma de pensar totalmente topológica, y la solución del problema nos trae a la característica de Euler, el primer invariante de la Topología Algebraica, pero sería muy arriesgado y arbitrario fechar en ese momento la aparición de la Topología. La situación es exactamente análoga a la del cálculo del area de la elipse por Arquímedes.
El término topología fue usado por primera vez por J. B. Listing, en 1836 en una carta a su antiguo profesor de la escuela primaria, Müller, y posteriormente en su libro Vorstudien zur Topologie (Estudios previos a la topología), publicado en 1847. Anteriormente se la denominaba analysis situs. Maurice Fréchet introdujo el concepto de espacio métrico en 1906.